Formation of DNA adducts and induction of mutagenic effects in rats following 4 weeks inhalation exposure to ethylene oxide as a basis for cancer risk assessment.
نویسندگان
چکیده
Ethylene oxide (EO) is mutagenic in various in vitro and in vivo test systems and carcinogenic in rodents. EO forms different adducts upon reaction with DNA, N7-(2-hydroxyethyl)guanine (N7-HEG) being the main adduct. The major objectives of this study were: (a) to determine the formation and persistence of N7-HEG adducts in liver DNA of adult male rats exposed to 0, 50, 100 and 200 ppm by inhalation (4 weeks, 5 days/week, 6 h/day) and (b) to assess dose-response relationships for Hprt gene mutations and various types of chromosomal changes in splenic lymphocytes.N7-HEG adducts were measured 5, 21, 35 and 49 days after cessation of exposure. By extrapolation, the mean concentrations of N7-HEG immediately after cessation of exposure ('day 0') to 50, 100 and 200 ppm were calculated as 310, 558 and 1202 adducts/10(8) nucleotides, respectively, while the mean concentration in control rats was 2.6 adducts/10(8) nucleotides. At 49 days, N7-HEG values had returned close to background levels. The mean levels of N-(2-hydroxyethylvaline) adducts in haemoglobin were also determined and amounted 61.7, 114 and 247 nmol/g globin, respectively. Statistically significant linear relationships were found between mean N7-HEG levels ('day 0') and Hprt mutant frequencies at expression times 21/22 and 49/50 days and between mean N7-HEG ('day 0') and sister-chromatid exchanges (SCEs) or high frequency cells (HFC) measured 5 days post-exposure. At day 21 post-exposure, SCEs and HFCs in-part persisted and were significantly correlated with persistent N7-HEG adducts. No statistically significant dose effect relationships were observed for induction of micronuclei, nor for chromosome breaks or translocations. In conclusion, this study indicates that following sub-chronic exposure, EO is only weakly mutagenic in adult rats. Using the data of this study to predict cancer risk in man resulting from low level EO exposures in conjunction with other published data, i.e., those on (a) genotoxic effects of EO in humans and rats, (b) DNA binding of other carcinogens, (c) natural background DNA binding and (d) genotoxic potency of low energy transfer (LET) radiation, it is not expected that long term occupational exposure to airborne concentrations of EO at or below 1 ppm EO produces an unacceptable increased risk in man.
منابع مشابه
Effects of ethylene oxide and ethylene inhalation on DNA adducts, apurinic/apyrimidinic sites and expression of base excision DNA repair genes in rat brain, spleen, and liver.
Ethylene oxide (EO) is an important industrial chemical that is classified as a known human carcinogen (IARC, Group 1). It is also a metabolite of ethylene (ET), a compound that is ubiquitous in the environment and is the most used petrochemical. ET has not produced evidence of cancer in laboratory animals and is "not classifiable as to its carcinogenicity to humans" (IARC, Group 3). The mechan...
متن کاملEvaluation of effects from repeated inhalation exposure of F344 rats to high concentrations of propylene.
Chronic exposure to propylene does not result in any increased incidence of tumors, yet does increase N7-hydroxypropylguanine (N7-HPGua) adducts in tissue DNA. To investigate any potential for genotoxicity (mutagenicity or clastogenicity), male F344 rats were exposed via inhalation to up to 10,000 ppm propylene for 1, 3, or 20 days (6 h/day, 5 days/week). The endpoints examined included gene (H...
متن کاملGenotoxicity of 1,3-butadiene and its epoxy intermediates.
Current risk assessments of 1,3-butadiene (BD*) are complicated by limited evidence of its carcinogenicity in humans. Hence, there is a critical need to identify early events and factors that account for the heightened sensitivity of mice to BD-induced carcinogenesis and to deter-mine which animal model, mouse or rat, is the more useful surrogate of potency for predicting health effects in BD-e...
متن کاملMolecular dosimetry of endogenous and ethylene oxide-induced N7-(2-hydroxyethyl) guanine formation in tissues of rodents.
The formation of N7-(2-hydroxyethyl)guanine (7-HEG) in DNA was investigated previously in target and non-target tissues of F-344 rats and B6C3F1 mice exposed to >/=ISOdia>/=10 p.p.m. concentrations of ethylene oxide (EO) using fluorescence-linked high-performance liquid chromatography [V.E. Walker et al. (1992) Cancer Res., 52, 4238-4334]. In order to study the dose-responses for 7-HEG at lower...
متن کاملDietary phytate lowers K-ras mutational frequency, decreases DNA-adduct and hydroxyl radical formation in azoxymethane-induced colon cancer
Objective(s): Dietary phytate is known to protect against azoxymethane (AOM)-induced preneoplastic lesions. The present study was designed to determine whether dietary phytate affects mutation frequency in colon epithelial cells challenged with azoxymethane in vivo, through lowering the formation of O6-methyl guanosine (O6-MeG) and 8-hydroxy deoxyguanosine (8-OHdG) ad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mutation research
دوره 447 1 شماره
صفحات -
تاریخ انتشار 2000